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Abstract. We calculate the spectral density functions required for the theoretical deter- 
mination of nuclear spin relaxation rates due to magnetic dipolar coupling between diffusing 
hydrogen spins in BCC metals. Both the like-spin (hydrogen-hydrogen) and unlike-spin 
(metal-hydrogen) contributions are determined using the Monte Carlo method of Faux, 
Ross and Sholl. Results are obtained for hydrogen-to-metal ratios of 0.12, 0.3 and 0.6 for 
the simple hopping model (no multiple occupancy of sites) and for a multiple site-blocking 
model in which the hydrogen spins block all sites as far as the second or third neighbour. For 
the simple hopping model, the results are in very good agreement with the multiple-scattering 
theory of Sankey and Fedders in the high- and low-temperature limits. For the multiple site- 
blocking models, it is found that the BPP model (due to Bloembergen, Purcell and Pound) 
and Torrey model can differ significantly from the Monte Carlo result, particularly at higher 
concentrations. The results obtained for DIT , ,  where D is the tracer diffusion coefficient 
and T ,  is the spin-lattice relaxation time, are compared to the experimental result on NbH,,,. 
The Monte Carlo method gives a value which is $ of the experimental value if blocking to 
either the second or the third neighbour is assumed. Agreement with experiment may be 
obtained if it is assumed that the hydrogen diffuses by a combination of jumps to nearest- 
neighbour and second-nearest-neighbour sites. 

1. Introduction 

There are a number of BCC metals which can absorb appreciable quantities of hydrogen, 
notably niobium, tantalum and vanadium. The hydrogen is highly mobile and diffuses 
by making thermally activated hops from one interstitial site to another. The type of 
interstitial site occupied by the hydrogen was the subject of dispute in early years but, 
in Nb and Ta at least, it has been established that the hydrogen occupies primarily the 
tetrahedral interstitial sites. There are four tetrahedral interstitial sites on each face of 
the BCC unit cell located at the (3 f 0) position. Although there are 6 interstitial sites per 
metal atom available for hydrogen atom occupancy, experimentally one finds that the 
fraction of interstitial sites, c, saturates at a maximum attainable concentration of c = Q. 
This suggests that a hydrogen atom occupying one site reduces the occupation probability 
of neighbouring sites for other hydrogens. This is not surprising because the distance 
betweenneighbouringinterstitial sitesis rathersmall (about 1.2 AinNb). It isconvenient 
to adopt a model which assumes that each hydrogen blocks completely all sites to either 
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the second or third neighbour and to neglect all longer-range interactions. We refer to 
this as the multiple site-blocking model. 

The multiple site-blocking model has been used successfully to explain many of the 
thermodynamic and diffusive properties of hydrogen in BCC metals. Oates et a1 (1985), 
for instance, undertook a series of Monte Carlo calculations of a variety of thermo- 
dynamic quantities and concluded that the effective blocking distance decreased from 
third to second neighbour as the temperature increased. A similar conclusion was 
reached by Faux and Ross (1987) who examined the tracer diffusion coefficients at 
different temperatures and concentrations in Nb/H and Ta/H, as obtained by NMR and 
quasielastic neutron scattering. These observations have recently been confirmed by 
some detailed quasielastic neutron scattering studies of deuterons in Nb (Hempelmann 
et a1 1988). It appears therefore that many of the properties of hydrogen in Nb and Ta 
are well described by a multiple site-blocking model and for this reason, and also for the 
ease with which it may be incorporated into a Monte Carlo simulation, we have adopted 
this model in the present paper. 

Much of the experimental work on metal-hydrogen systems has been directed toward 
the measurement of transport-related quantities such as the tracer diffusion coefficient, 
mean residence time, jump length (the hydrogen may not necessarily hop to nearest- 
neighbour sites), activation energies for diffusion and the pre-exponential factors. NMR 
hasproved to be one of the most popular techniquesfor the evaluation of these quantities. 
Direct determination of the tracer diffusion coefficient combined with spin-lattice 
relaxation rate (T: ' )  measurements can lead to estimations of all the above quantities. 
Measurements of the relaxation rate are only useful however, if the experimental data 
can be compared to an appropriate theory. 

There are four different theories which have been used to determine the relaxation 
rate for a system of diffusing spins occupying the tetrahedral site of a BCC host; each 
contains different levels of approximation. The simplest of these is the BPP theory, 
named after Bloembergen, Purcell and Pound (1948), and sometimes called the single- 
relaxation-time (SRT) theory. Despite being derived for liquids, it has found frequent 
use in solid-state systems and has the advantage that the final relaxation rate is of a 
simple analytic form. Each of the remaining theories produces approximate results 
based on the simple hopping model (no multiple occupancy of sites) but none addresses 
explicitly the problem of multiple site-blocking. The second theory, due to Torrey 
(1953), represents the first attempt to treat the discrete nature of lattice diffusion (see 
also Resing and Torrey 1963 and Weaver and Van Dyke 1972). This theory assumes that 
a spin may hop to any position on the surface of a sphere of radius 1 from its current 
position. The theory is a significant improvement over the BPP model and it is fairly 
straightforward to evaluate the integrals required for the determination of the spectral 
density functions and hence the relaxation rate. The Torrey theory is most accurate for 
lattices with high coordination numbers, such as the FCC lattice which has 12 nearest 
neighbours, and is least accurate for lattices with low coordination such as that of interest 
here. The third theory, the multiple-scattering (MS) theory of Sankey and Fedders 
(1980), is easily the most accurate of the three so far described producing values of the 
relaxation rate which are estimated to be accurate to within a per cent or so. The MS 
theory is the only theory which determines explicitly the spin-spin correlation functions 
and is therefore the only theory which predicts different values of the relaxation rate at 
different concentrations (although it is possible to make some crude modifications to 
the BPP and the Torrey theories). The MS theory is, however, highly complex and it is 
not possible to present analytic expressions for the relaxation rate. Sankey and Fedders 
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do, however, evaluate the high- and low-temperature limits and these are useful for 
comparison to the present results. The fourth theory is by MacGillivray and Sholl(l983) 
who evaluate the low-temperature limit of the relaxation rate using mean-field theory. 
Their results are exact as the spin concentration vanishes. 

It should be emphasised that the theories outlined above are concerned only with 
the simple hopping model. Yet even for this simple model an exact determination of the 
relevant diffusion correlation functions at arbitrary concentrations is not possible. Each 
of the theoretical methods tackles this simple case to various degrees of approximation. 
We, however, are concerned with the effects of multiple site-blocking on the relaxation 
rate. This problem is even more complicated and can only be introduced into the above 
theories in a very approximate way. It is clear that only a Monte Carlo method is capable 
of accurately determining the appropriate diffusion correlation functions and hence the 
relaxation rate for the multiple site-blocking model. 

The first attempt at using a Monte Carlo (MC) method to evaluate the diffusion 
correlation functions necessary to determine relaxation rates was made by Bustard 
(1980), but his work was specifically geared towards the Ti/H system. The only other 
MC studies of the relaxation rate are those of Faux, Ross and Sholl (1986), hereafter 
referred to as FRS, and the follow-up study by Faux and Hall (1988). FRS calculated the 
like-spin relaxation rate for spins diffusing on the BCC, FCC and sc lattices using the 
simple hopping model. These authors evaluated the correlation functions using a MC 
method for short diffusion distances (which require an accurate determination of the 
correlation functions) and an analytic correction, based on the diffusion equation, at 
longer distances. Special methods were also used in the Fourier transform process 
required to produce the final relaxation rates. Faux and Hall (1988), hereafter referred 
to as FH, demonstrated the flexibility of the MC method by investigating the effect of 
nearest-neighbour interactions between diffusing spins on T ;'. They showed that a 
finite interaction energy could lead to asymmetries in the peak of the relaxation rate. 
The MC procedure ifitrodwed by FRS and modified by FH produces results which are 
estimated to be accurate to better than 2% , except at high frequencies (low tempera- 
tures) when the Fourier transform procedure becomes less accurate. FH also introduced 
a convenient method of expressing the results by fitting an expression of the form 
suggested by Sholl(l988) to the MC data. 

In this paper the MC method introduced by FRS and modified by FH will be used to 
evaluate the diffusion correlation functions and hence the spectral density functions for 
hydrogen spins diffusing via nearest-neighbour hops between the tetrahedral interstitial 
sites of a BCC host metal. The calculations are performed for the simple hopping model 
and also for the cases where each hydrogen atom blocks sites out to the second or third 
nearest neighbour. Results are obtained at the atomic ratiosx = 0.12,0.3 and 0.6 where 
x = 6c. 

The calculation is outlined in the following section. The results are presented in 
section 3 and are compared to the predictions of the BPP, Torrey and MS theories and 
also to the experimental result on NbHo,6. Finally, the conclusions are presented in 
section 4. 

2. Calculation 

The spectral density functions calculated in the present paper may be used to determine 
the spin-lattice relaxation rate ( T i * )  or the spin-lattice relaxation rate in the rotating 



9922 D A Faux and C K Hall 

frame (T;:). We shall concentrate on the T;' relaxation rate. T;' usually consists of 
three components 

T;' = T i '  + T-' IS + T i '  (1) 
The quantity T;' is the contribution to the relaxation due to the interaction of spins 
with conduction electrons. This portion is generally assumed to be described by the 
well known Korringa relation and is subtracted from the experimentally determined 
relaxation rate. The remaining terms, T i '  and T ;s', can be determined from the spectral 
density functions calculated in the present paper. T i '  is the relaxation rate due to the 
like-spin (hydrogen-hydrogen) dipolar interactions and T,' is the contribution due to 
unlike-spin (hydrogen-metal) dipolar interactions. If the metal has no nuclear spin 
(S = 0), the latter contribution is zero. For the case of Nb, S is equal to Q and so the 
unlike-spin component is an important contribution to the relaxation rate. 

Each relaxation rate may be expressed in terms of the spectral density functionsg(y) 
and h(y) by the following equations (Abragam 1961, Cotts 1972, Sholl1974), 

T,' = BAMY)  + 4d2Y)l 

T,' = &B~[+h(y  - Wy) + h(y) + 2h(y + Wy)] 

(2) 

(3) 
where t is the mean residence time of a hydrogen spin at an interstitial site. The 
dimensionless quantities y and Ware equal to wIz/2 and ws/wI respectively, where wI 
and ws are the Larmor frequencies of the hydrogen and metal nuclei. The expressions 
for A and B are, 

A = ( , ~ ~ / / 4 n ) ~ y ~ f i ~ Z ( Z  + Z)cF6 

B = (p.0/4n)2yy: ygfi2S(S + Z)QK6 
(4) 

( 5 )  
where yI, y s ,  Z and S are the gyromagnetic ratios and spin quantum numbers of the 
proton and metal nucleus respectively. The quantities c and Q are, respectively, the 
fraction of interstitial sites containing a hydrogen spin and the fraction of metal nuclei 
which possess a spin (Q = 1 of all metal isotopes possess the spin S). b is the cubic lattice 
parameter of the metal lattice. The remaining term, the permeability of the vacuum p 0  
divided by 4n, is included to ensure that equations are correct with all quantities in SI 
units. 

In this paper we focus on the calculation of the spectral density functions g(y) and 
h(y) for hydrogen spins diffusing via the tetrahedral sites of a BCC metal. In equations 
(2) and (3), the lattice summations which normally appear in expressions of this type 
(see for example Cotts 1972) are incorporated within g(y) and h(y). This can be seen in 
equations (6)-(9) which relate these functions to the fundamental probabilities describ- 
ing the diffusion of the spins. The spectral density functions are the Fourier transforms 
of the correlation functions G ; ( U )  and G ( U ) ,  

g(y) = 2 1- GI* ( U )  cos(2yu) d u  

h(y) = 2 lom G,* ( U )  cos(2yu) d u  

(6) 

(7) 

0 

where the dimensionless quantity U ,  equal to t / z ,  is the average number of jumps per 
atom and is a convenient time scaling for the Monte Carlo program. The Monte Carlo 
calculations are performed for values of U ranging from 0 to a maximum value U,, which 
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is chosen to be 18. For U > U,,  the correlation functions are approximated by an 
expression of the form where Cis easily evaluated (FH). For U G U,,  the following 
expressions are used to evaluate the correlation functions (FH), 

P‘(ri> G t ( u ) =  b6 P2(cosBij)PI(r i ,r j ,u)-r;3rj3 +G,*(u,Q2, ,2D) 
i j  c 

rm=r , ,=rmax  

G,* ( U )  = b6 P2(cos Bmn)Ps(rm,  r , ,  u ) r i 3 r i 3  + G,* ( U ,  Qs, D) (9) 
m n  

PI(rj ,  rj, U )  is the probability that a pair of hydrogen spins, separated by ri at time zero, 
are separated by rj at time U .  Similarly, Ps(r,, r,, U )  describes the motion of a hydrogen 
spin relative to the metal nuclei. These probability functions are fundamentally different 
and each has to be determined from the Monte Carlo simulation. PI describes the relative 
motion of pairs of spins which occupy the same lattice but cannot, of course, occupy the 
same interstitial site or diffuse through each other. Ps, on the other hand, describes the 
motion of a mobile spin relative to a stationary metal nucleus which does not interfere 
with the motion of the mobile spin. Both these functions are calculated by the Monte 
Carlo program to a maximum pair separation r,,, which, in all simulations, included all 
pairs separated by a distance of up to the thirteenth neighbour. 

A second probability function, P ’ ( r i ) ,  is also evaluated by the Monte Carlo program. 
This is the average spin concentration in a shell of radius ri about a hydrogen spin. 
P ’ ( r J / c  is unity for the simple hopping model at all values of ri but differs from unity for 
the multiple site-blocking models. The equivalent term in equation (9) is always equal 
to one, even in the presence of multiple blocking, and so is omitted. The second Legendre 
polynomial P2(x) is equal to $(3x2 - 1) and eij (or e,,) is the angle between the vectors 
rj and rj (or r, and r,). 

The like-spin correction term G in equation (8), which accounts for pairs separated 
by r > rmax, is identical to that used in a previous publications (FRS equation 3.2) but has 
been written here to be a function of the volume per hydrogen site Ql and the tracer 
diffusion coefficient D as well as the time U .  The correction term for unlike-spin hopping 
has the same functional form as the correction term for like-spin hopping except that 
the volume per metal site Qs is used and D is replaced by $D. The latter is necessary 
because the correction term derived in FRS was developed for two spins each moving 
with a diffusion coefficient D whereas, for the unlike-spin contribution, the hydrogen 
spins are moving with a diffusion coefficient D relative to stationary metal nuclei. 

The entire procedure may be summarised as follows. First the Monte Carlo simu- 
lation determines the probability functions PI, Ps and P’ using the same procedures as 
described by FRS and FH. The simulations were performed on a lattice of 210912 hydrogen 
sites for x = 0.12 and 127776 hydrogen sites at the remaining concentrations. In each 
run, a series of measurements are made at various intervals of U from 0 to 18 (U, )  

jumps per atom. Typically several hundred such runs are required to obtain satisfactory 
statistics. It is difficult to generate results at smaller concentrations than the value 0.12 
used here because larger lattice sizes would be needed. The results for the probability 
functions are substituted into equations (8) and (9) and the correction term is added to 
obtain the correlation functions GI* and G,* . These correlation functions are dependent 
only on the time parameter U. Special Fourier transform techniques (fully described in 
FRS and FH) are then used to evaluate the spectral density functions. 
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Table 1. The parameters required to determine g ( y )  via equation (10) are presented. A , ,  A Z  
and A 3  are fit to the data. The results are presented as a function of the hydrogen-to-metal 
ratio x for the simple hopping model (model 0) and for multiple site-blocking to the second 
(model 2) and third (model 3) neighbour. 

0 0.12 6520 563 0.051 0.197 1550 
0.3 6580 578 0.060 0.168 1520 
0.6 6690 596 0.061 0.202 1550 

2 0.12 2300 597 0.071 -0.198 65.3 
0.3 2460 663 0.069 -0.147 68.9 
0.6 2800 801 0.065 -0.082 70.8 

3 0.12 2000 651 0.035 -0.036 25.5 
0.3 2380 861 0.026 0.216 32.9 
0.6 4280 1904 0.002 0.608 34.4 

3. Results and discussion 

The spectral density functions g ( y )  and h ( y )  are evaluated at three hydrogen con- 
centrations x = 0.12,0.3 and 0.6. At each of these concentrations, results are obtained 
for the simple hopping model and also for the multiple site-blocking model with the 
blocking extending to either the second neighbour or to the third neighbour. Each 
interstitial site has four first, two second and eight third nearest neighbours. 

The MC results are fitted to expressions for g ( y )  and h ( y )  which have the correct 
functional form in the small-y and large -y limits for both g ( y )  and h ( y ) .  The expression 
is that used by FH which was based on a form suggested by Sholl(1988), namely, 

g ( y )  = [g(O)-' + ( 4 ~ r ' / ~ C / g ( O ) ~ ) y ~ / ~  + ( A l y 3 / 4  + A 2 y 3 / 2  + y 2 ) / A 3 ] - '  (10) 

with a similar expression for h ( y ) .  The parameters which are fit to the data (A l ,  A 2  and 
A 3 )  are presented in tables 1 and 2 together with the remaining quantities necessary to 
generate g ( y )  and h ( y )  using equation (10). The value of C in these tables is obtained 
using equation (10) of FH with values of the tracer correlation factor obtained from the 
expressions of Faux and Ross (1987). (Note that equation (10) of FH has the quantity U 

incorrectly included). Good fits are obtained to all data up to a maximum value of y of 
10 for the simple hopping model. With blocking extending to the second and third 
neighbour, the maximum value of y used for the fits was 5 and 1 respectively. At larger 
values of y the data are poor due to the increasingly significant contribution which comes 
from the numerical part of the Fourier transform. 

In figure 1, the MC values for g( y )  at x = 0.12 are presented for the simple hopping 
model (labelled MC-0) and the third-neighbour blocking model (labelled MC-3). The MC 
values for the simple hopping model are compared to the BPP (Bloembergen, Purcell 
and Pound 1948) and Torrey (Torrey 1953, Resing and Torrey 1963, Weaver and Van 
Dyke 1972) theories and also with the MS theory (Sankey and Fedders 1980) at the small- 
and large-y limits. (MacGillivray and Sholl also evaluated the large-y limit using mean- 
field theory and obtained a similar result to Sankey and Fedders). The BPP and the Torrey 
models are expected to be most accurate in the limit x +. 0. The MS theory is exact in this 
limit, but only the small and large-y extrema are published by Sankey and Fedders. The 
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Table 2. The parameters required to determine h(y)  using an expression similar to equation 
(10) are presented. A,,  A 2  andAj  are fit to the data. The results are presented as a function 
of the hydrogen-to-metal ratio x for the simple hopping model (model 0) and for multiple 
site-blocking to the second (model 2) and third (model 3) neighbour. 

0 0.12 1070 266 
0.3 1090 271 
0.6 1110 281 

2 0.12 1110 282 
0.3 1180 313 
0.6 1330 377 

3 0.12 1170 307 
0.3 1410 406 
0.6 2410 898 

0.067 
0.066 
0.066 

0.069 
0.069 
0.067 

0.071 
0.072 
0.042 

-0.047 36.9 
-0.030 37.1 

0.004 37.6 

-0.030 37.2 
0.038 38.3 
0.222 41.3 

0.027 38.2 
0.269 42.3 
1.790 64.9 

8 I 
I 

1 
- 6  -4 -2 0 2 

In Y 

Figure 1. Plot of In g ( y )  versus In y .  The MC results at x = 0.12 are presented for the simple 
hopping model (labelled MC-0) and for blocking to the third neighbour (labelled MC-3). These 
are compared to the BPP, Torrey and MS theories for the simple hopping model. 

MC results are in very satisfactory agreement with these limits. The Torrey and BPP 
models give poor agreement at low y but the agreement improves at larger values of y .  
The Torrey theory is an improvement over the BPP theory at all values of y .  The MC 
results for blocking to the third neighbour may be compared to the results for the simple 
hopping model. The blocking model yields values for g ( y )  which are at least a factor of 
3 smaller at low values of y and a factor >40 smaller at larger values of y than the values 
for the simple hopping model. The value of g ( y )  drops because blocking is equivalent 
to weakening the hydrogen-hydrogen spin interaction. Multiple site-blocking does not 
affect the proximity to metal atoms, however, and so the value of h ( y )  is almost 
independent of the extent of the multiple site-blocking as shown in figure 2. The small 
difference which exists at low y is due to the slightly smaller tracer correlation factor 
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Figure 2. Plot of In h ( y )  versus In y .  The MC results at x = 0.12 are presented for the simple 
hopping model (labelled MC-0) and for blocking to the third neighbour (labelled MC-3). These 
are compared to the BPP, Torrey and MS theories for the simple hopping model. 

6t  

TOR-3 I 
t i 

Figure3. Plot ofg(0) versusx. The resultsfrom t h e ~ c ,  BPP, andTorreytheoriesarepresented 
for the simple hopping model (0) and for the multiple site-blocking model with blocking to 
the second (2) and third (3) neighbour. The results of the MS and mean-field (MF) theories 
for the simple hopping model are also presented. 

(and hence the tracer diffusion coefficient) at the concentration x = 0.12 for the case 
where the blocking extends to the third neighbour. This difference would disappear, of 
course, in the limit x + 0. Once again the agreement with the MS result in the small- and 
large-y limit is very good. 

In figures 3 and 4 we focus on the results for g(0) and h(0) and compare the values 
obtained as a function of concentration with those from the BPP, Torrey and MS theories. 
These quantities are important because they determine the small-y , or high-tem- 
perature, limit of the relaxation rate and this is the region most accessible experimentally. 
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Figure 4. Plot of h(0) versus x .  The results from the MC theory is presented for the simple 
hopping model (0) and for the multiple site-blocking model with blocking to the second (2) 
and third (3) neighbour. The results of the BPP, Torrey, MS and mean-field (MF) theories for 
the simple hopping model are also presented. 

For instance, in the small-y limit, the like-spin and unlike-spin relaxation rates are easily 
obtained from equations (2) and (3), namely, 

The values of g(0) and h(0) predicted by the other theoretical models are also easily 
obtained. In the BPP model (see for example Zamir and Cotts 1964, Zogal and Cotts 
1975), g(0) is equal to SI and h(0) is equal to 2Ss, where 

P’(r,)  sI = GT(O) = b6 2 rr6  - 
i =  1 C 

The summations are taken over values of r, defined to be the distance from an occupied 
interstitial site to each surrounding interstitial site and for values of rm equal to the 
distance from an occupied interstitial site to all metal sites. The BPP model predictions 
for g(0) and h(0) for the multiple site-blocking model may be obtained from equations 
(13) and (14) by using the approximation that P ’ ( r , )  is zero when r, corresponds to a site 
which is within the blocking distance, and equal to c elsewhere. The values of SI and Ss 
obtained in this way are given in table 3. 

The Torrey model is slightly more complicated and requires the evaluation of the 
functions G(kH,  0) and G(kM,  0) (using the notation of Resing and Torrey 1963), where 
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Table3. The lattice summations SI and Ss are given by equations (13) and (14) and the tracer 
correlation factor f is from Faux and Ross (1987). The remaining quantities are required in 
order to determine the spectral density functions using the Torrey model (see text). 

f 
Model SI SS x =0.12 x =  0.3 x = 0 . 6  kH kM G(k,,O) C(kM,O) 

0 2486.2 146.53 0.99 0.98 0.95 0.771 1.090 0.654 1.096 
2 319.2 146.53 0.95 0.89 0.78 1.527 1.090 2.002 1.096 
3 158.5 146.53 0.90 0.75 0.44 1.929 1.090 3.104 1.096 

kH and kM are lattice-dependent normalisation constants. The expressions for g(0) and 
h(0) using the Torrey model are, 

g(0) = 3 G ( k ~ ,  O)SI (15)  

h(0) = 6 G ( k M ,  0)Ss (16)  
The method of calculating these quantities is presented by Resing and Torrey (1963) 
and also by Weaver and VanDyke (1972). The relevant quantities are listed in table 3 .  
Finally, the small- and large-y limits of the MS model are presented by Sankey and 
Fedders in terms of the quantities b,(O) and a,(O) which are tabulated by the authors. In 
this case, g(0) is equal to b,(O) and h(0) = 3a0(0)/2.  

The values obtained from each of these theories are plotted in figures 3 and 4. Only 
the MS and MC results depend on concentration and the agreement between the two for 
the simple hopping model is very satisfactory. Once again the Torrey model is an 
improvement over the BPP model for both g(0) and h(0). Only the MC result, however, 
shows a sharp increase in the value of h(0) and g(0) with concentration for the case of 
blocking to the third neighbour. This effect arises because the hydrogen spins are forced 
to spend a greater amount of time in a small region of crystal due to the blocking effect 
of surrounding hydrogen spins. 

We may use the results presented in figures 3 and 4 to compare with the experimental 
result of Zogal and Cotts (1975). These authors measured the tracer diffusion coefficient 
D and the T;' relaxation rate for hydrogen in a sample of NbHo,6 and compared the 
quantity DIT ,  with the predictions of the BPP theory (which they called the SRT, or single- 
relaxation-time theory) and the Torrey theory. Both gave poor agreement with the 
experimental result if it was assumed that the RMS jump length, (l2)'I2,  equalled the 
nearest-neighbour distance. They were forced to conclude that (p)"2 lay somewhere 
between 0% and 0.8b (between the second and fifth neighbour). 

Table 4. The values of D I T ,  for various models in units of m2 s-', 

Model BPP Torrey MS MC Experiment 

0 0.39 1.08 1.31 1.31 
2 0.21 0.74 1.03 1.5? 0.2 
3 0.11 0.40 1.03 
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The predictions of the BPP, Torrey, MS and MC theories are compared to the exper- 
imental value of Zogal and Cotts in table 4. The values of DIT1 are obtained by 
multiplying equations (11) and (12) by the tracer diffusion coefficient D, equal to 
12f /6 t ,  and by substituting the values of h(0) and g(0) obtained from each theory. For 
the tracer correlation factor f ,  we use the result of Faux and Ross (1987) which is given 
in table 3. For the Nb/H system, y s / y r  = 0.244 and yI = 2.6752 x lo8 s-' T-' , a ndS, the 
spin quantum number of the niobium spins, is equal to$. The lattice parameter b is equal 
to 3.42& Q is equal to 1 and l2  = b2/8 for nearest-neighbour hops. The results are 
presented in table 4 and are slightly different from those published by Zogal and Cotts 
and by Sankey and Fedders because we have also included the tracer correlation factor 
f in  these calculations. This factor was ignored by Zogal and Cotts and an approximate 
expression was used by Sankey and Fedders. 

The results of the comparison are interesting. The agreement between the predictions 
of the MS theory and the MC method for the case of the simple hopping model is not 
surprising in view of the accuracy of the two techniques. These results are within the 
quoted experimetnal error, but fortuitously so, because the simple hopping model is 
inappropriate for the Nb/H system at high concentrations. The MS theory cannot be 
easily extended to the case of multiple site-blocking and so this comparison is confined 
to the BPP, Torrey and MC theories. Here the MC values are approximately f of the 
experimental value. The MC method gives similar results for both the second- and third- 
neighbour blocking models. This is because the smaller value of the tracer correlation 
factor for blocking to the third neighbour is compensated by larger values of g(0) and 
h(0). The BPP model however is a factor 7 or 15 too low and the Torrey model is 2 or 4 
too low for each of the multiple site-blocking models. 

Following the same arguments as Zogal and Cotts, agreement between the MC result 
and experiment can be obtained if (12 ) ' /2  lies between 0.4b and 0.45b. The jump distance 
is between the nearest neighbour (0.3%) and the second nearest neighbour (0.56). 
Agreement with experiment can therefore be obtained if the spins make roughly equal 
combinations of nearest-neighbour and second-nearest-neighbour jumps. This is not 
unreasonable from a geometrical point of view as both the first- and second-neighbour 
sites are easily accessible whereas hops to more distance sites are most likely to occur 
via a first- or second-neighbour site. Of course a true comparison can only be made by 
evaluating the spectral density functions for a two-site hopping model. 

4. Conclusions 

The Monte Carlo results presented in this paper demonstrate the effect of concentration 
and multiple site-blocking on the spectral density functions which determine the nuclear 
spin relaxation rates due to the translational diffusion of interstitial spins in BCC metals. 
Both the like-spin and unlike spin contributions are calculated. It is found that the BPP 
and Torrey models are generally in poor agreement with the MC data with the agreement 
worse at high concentrations and for greater blocking distances. The Torrey theory is, 
however, a significant improvement over the BPP theory and should prove adequate for 
systems with a low concentration of spins. Very good agreement is obtained with the MS 
theory in the high- and low-temperature limits presented by Sankey and Fedders. 
Comparison with the experimental data of Zogal and Cotts suggests that the hydrogen 
spins in Nb/H diffuse by a combination of nearest-neighbour and second-nearest- 
neighbour hops. This result is in contrast to Zogal and Cotts who, by comparison with 
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the Torrey and BPP theories, were forced to conclude that the RMS jump length was 
between the second and fifth neighbour. 
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